|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: P.J. PottsPublisher: Kluwer Academic Publishers Group Imprint: Kluwer Academic Publishers Edition: New edition Dimensions: Width: 21.00cm , Height: 3.20cm , Length: 28.00cm Weight: 1.545kg ISBN: 9780216932098ISBN 10: 0216932092 Pages: 622 Publication Date: 20 February 1992 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1 Concepts in analytical chemistry.- 1.1 Introduction.- 1.2 Terms and definitions in analytical chemistry.- 1.3 Units of measurement: the international system (SI) of units.- 1.4 Statistics.- 1.5 Detection limits.- 1.6 Sampling strategies: inhomogeneity effects.- 1.7 Contamination effects.- 1.8 Reporting analytical data.- 1.9 Standard additions calibrations.- 1.10 Rock reference materials.- 1.11 Which technique for which element?.- 2 Classical and rapid methods of analysis.- 2.1 Rock dissolution techniques: acid attack.- 2.2 Rock dissolution procedures: fusion with alkali salts.- 2.3 Classical methods of rock analysis.- 2.4 Evolution of rapid methods of analysis.- 2.5 Photometry.- 2.6 Flame photometry.- 2.7 Titrations involving ethylenediaminetetra-acetic acid (EDTA).- 2.8 A rapid scheme of analysis.- 2.9 Determination of ferrous iron.- 2.10 The determination of water and carbon dioxide.- 2.11 The auto-analyser.- 3 Optical spectrometry: principles and instrumentation.- 3.1 Principles.- 3.2 The nature of light.- 3.3 Atomic spectroscopy.- 3.4 The electronic structure of atoms: quantum theory.- 3.5 Spectroscopic notation for electron orbital configurations: the Russell-Saunders coupling scheme.- 3.6 The absorption of light.- 3.7 The emission of light.- 3.8 Instrumentation for optical spectroscopy.- 3.9 Monochromator.- 3.10 Optical filters.- 3.11 Slits.- 3.12 Photon detectors.- 3.13 Classical monochromator designs.- 3.14 Stray light effects.- 3.15 Errors in spectrometric measurements.- 4 Atomic absorption spectrometry.- 4.1 Introduction.- 4.2 Instrumentation.- 4.3 Properties of flames.- 4.4 Flame chemistry and atomization interferences in the flame: atomization processes in the flame.- 4.5 Instrumental and spectral interferences.- 4.6 Instrument optimization for routine analysis.- 4.7 Schemes of analysis using flame atomic absorption.- 4.8 Interference suppression.- 4.9 Detection limits.- 4.10 Routine performance.- 4.11 Electrothermal atomization.- 4.12 Atomization in the hollow graphite furnace.- 4.13 Background correction.- 4.14 Geological applications of furnace AAS.- 4.15 Cold vapour and hydride generators.- 4.16 Solid sampling and novel atomization devices.- 5 Inductively coupled plasma-atomic emission spectrometry.- 5.1 Historic development and analytical capabilities.- 5.2 The inductively coupled argon plasma.- 5.3 Nebulizers and spray chambers.- 5.4 Physical structure of the plasma.- 5.5 Temperature distribution in the plasma.- 5.6 Atomization and excitation processes.- 5.7 Interferences in the argon plasma.- 5.8 Measurement and analysis of emission spectra.- 5.9 Some instrument considerations-simultaneous ?. sequential monochromators.- 5.10 Optimizing operating parameters.- 5.11 Calibrations for ICP-AES.- 5.12 Silicate rock analysis.- 5.13 Direct current plasma-optical emission spectrometry.- 6 Arc and spark source optical emission spectrometry.- 6.1 Historical perspective.- 6.2 Instrumentation.- 6.3 Sample preparation.- 6.4 Behaviour of elements in an arc discharge.- 6.5 Simultaneous multi-element analysis.- 6.6 Conclusions.- 7 Ion-selective electrodes.- 7.1 Analytical perspective.- 7.2 Instrumentation.- 7.3 The Nernst equation.- 7.4 Interference effects: non-ideal Nernst behaviour.- 7.5 Schemes for the analysis of geological samples for fluorine.- 7.6 Determination of chlorine by ion-selective electrodes.- 7.7 Other techniques for the determination of chlorine and fluorine.- 8 X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry.- 8.1 Analytical characteristics.- 8.2 Energy and wavelength of x-rays.- 8.3 The origin of x-ray spectra.- 8.4 Competing de-excitation routes.- 8.5 Excitation of x-ray spectra.- 8.6 Interaction of x-rays with matter.- 8.7 Matrix effects in geological samples.- 8.8 Mathematical procedures for the correction of absorption-enhancement effects.- 8.9 Instrumentation for wavelength dispersive XRF analysis.- 8.10 Experimental considerations.- 8.11 Routine operating conditions and statistical considerations.- 8.12 Performance in routine analysis.- 8.13 Concluding remarks.- 9 Energy dispersive X-ray spectrometry.- 9.1 The development of energy dispersive XRF.- 9.2 The Si(Li) detector.- 9.3 Detector configuration and characteristics.- 9.4 Pulse processing electronics.- 9.5 Interaction of x-rays with the silicon detector.- 9.6 Comparison of ED and WD spectrometers.- 9.7 Silicate rock analysis by ED-XRF using direct tube excitation.- 9.8 Spectrum analysis procedures.- 9.9 Routine analysis using direct tube excitation.- 9.10 Indirect excitation methods.- 9.11 Monochromatic polarized excitation using Bragg diffraction at 2?= 90 DegreesC.- 9.12 Radioisotope excitation.- 9.13 Total reflection of primary beam.- 9.14 Concluding remarks.- 10 Electron probe microanalysis.- 10.1 The development of microprobe techniques.- 10.2 Microbeam techniques.- 10.3 Instrumentation for the electron probe microanalyser.- 10.4 Electron column design.- 10.5 Vacuum requirements.- 10.6 Interactions between the electron beam and sample: the excited volume.- 10.7 Phenomena within the excited volume.- 10.8 X-ray production.- 10.9 Matrix correction procedures.- 10.10 X-ray spectrometers.- 10.11 Calibration and routine operation.- 10.12 Energy dispersive spectrometers.- 10.13 Sample preparation requirements.- 10.14 Microprobe mineral standards.- 10.15 Routine analytical performance.- 10.16 Analysis of non-silicate minerals: uranium, thorium and rare-earth elements.- 10.17 Bulk rock analysis by electron microprobe.- 10.18 The SEM as a microprobe.- 10.19 Concluding remarks.- 11 Other microbeam and surface analysis techniques.- 11.1 Introduction.- 11.2 The ion probe.- 11.3 The laser microprobe.- 11.4 Particle-induced x-ray emission (PIXE).- 11.5 Electron spectroscopy for chemical analysis (ESCA).- 11.6 Transmission electron microscopy: the chemical analysis of thin foils.- 12 Neutron activation analysis.- 12.1 Introduction.- 12.2 The growth and decay of radioactivity.- 12.3 Radioactive decay schemes.- 12.4 Instrumentation.- 12.5 Pulse-processing electronics.- 12.6 Interaction of gamma radiation with germanium detectors.- 12.7 Typical spectrum.- 12.8 Detector characteristics.- 12.9 Practical considerations-instrumental neutron activation.- 12.10 Determination of photopeak areas.- 12.11 Other analytical considerations.- 12.12 Interferences and systematic errors.- 12.13 Routine schemes of analysis.- 12.14 Chondrite normalized abundances.- 12.15 Epithermal ?. thermal irradiations.- 12.16 Short-lived isotopes.- 12.17 Radiochemical separation procedures.- 12.18 Prompt gamma neutron activation analysis.- 12.19 Concluding remarks.- 13 Nuclear techniques for the determination of uranium and thorium and their decay products.- 13.1 Techniques for uranium/thorium determination.- 13.2 The uranium-thorium decay chain.- 13.3 Delayed neutron fission activation analysis.- 13.4 Fission track analysis.- 13.5 Other autoradiography techniques for locating and analysing specific elements in thin section.- 13.6 Gamma spectrometry.- 13.7 Alpha spectrometry.- 13.8 Secular equilibrium with particular reference to uranium/thorium disequilibrium measurements.- 13.9 Uranium and thorium series disequilibrium.- 14 Ion exchange preconcentration procedures.- 14.1 Introduction.- 14.2 Ion exchange techniques.- 14.3 Characteristics of ion exchange resins.- 14.4 Some theoretical aspects of ion exchange.- 14.5 Optimizing column separations.- 14.6 Applications of ion exchange chromatography to rare-earth element separations.- 14.7 Chelating ion exchange resins.- 14.8 Other preconcentration procedures.- 15 Gold and platinum group element analysis.- 15.1 Introduction.- 15.2 Fire assay procedures.- 15.3 Acid extraction of noble metals.- 15.4 Other methods of noble metal analysis.- 15.5 Noble metal analysis-comparisons of data.- 15.6 A note on the distribution of noble metals.- 15.7 Graphical presentation of PGE data.- 16 Mass spectrometry: principles and instrumentation.- 16.1 Introduction.- 16.2 Mass spectrometric techniques in geology.- 16.3 The ion source.- 16.4 The mass analyser.- 16.5 Resolution.- 16.6 Double-focusing mass spectrometer.- 16.7 Quadrupole mass spectrometer.- 16.8 Ion detectors.- 16.9 Vacuum requirements.- 16.10 Abundance sensitivity.- 16.11 Beam switching ?. multiple collection.- 16.12 Isotopes and mass spectra: the structure of atoms and nuclear stability.- 16.13 Mass defect phenomena.- 16.14 Radioactive isotopes in nature.- 16.15 Geochronology.- 16.16 Geochronometers of geological importance.- 17 Thermal ionization mass spectrometry.- 17.1 Introduction.- 17.2 Ion production.- 17.3 Rubidium-strontium isotope analysis.- 17.4 Neodymium-samarium isotope analysis.- 17.5 Lead, uranium and thorium isotope analysis.- 17.6 Isotope dilution.- 18 Gas source mass spectrometry.- 18.1 Geological applications.- 18.2 Instrumentation.- 18.3 The delta convention for reporting isotope data.- 18.4 Hydrogen isotope analysis.- 18.5 Carbon isotope analysis.- 18.6 Nitrogen isotope analysis.- 18.7 Oxygen isotope analysis.- 18.8 Sulphur isotope analysis.- 18.9 Noble gas analysis.- 18.10 Potassium-argon geochronometry.- 19 Spark source mass spectrometry.- 19.1 Introduction.- 19.2 Instrumentation and ion production.- 19.3 Internal standardization.- 19.4 Routine data acquisition.- 19.5 Photoplate calibration and element sensitivities.- 19.6 Applications and results.- 19.7 Future developments.- 20 Inductively coupled plasma-mass spectrometry.- 20.1 Introduction.- 20.2 Development of ICP-MS instrumentation: the plasma-mass spectrometer interface.- 20.3 The inductively coupled plasma as ion source.- 20.4 ICP-mass spectrometry instrumentation.- 20.5 Performance and applications.- 20.6 Internal standardization.- 20.7 Isotope dilution.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |