|
![]() |
|||
|
||||
Overview- 了解流动性,房屋净值和许多其他关键银行业特征变量的作用; - 选择并处理变量; - 预测违约、偿付、损失率和风险敞口; - 利用危机前特征预测经济衰退和危机后果; - 理解COVID-19对信用风险带来的影响; - 将创新的抽样技术应用于模型训练和验证; - 从Logit分类器到随机森林和神经网络的深入学习; - 进行无监督聚类、主成分和贝叶斯技术的应用; - 为CECL、IFRS 9和CCAR建立多周期模型; - 建立用于在险价值和期望损失的信贷组合相关模型; - 使用更多真实的信用风险数据并运行超过1500行的代码... - Understand the role of liquidity, equity and many other key banking features - Engineer and select features - Predict defaults, payoffs, loss rates and exposures - Predict downturn and crisis outcomes using pre-crisis features - Understand the implications of COVID-19 - Apply innovative sampling techniques for model training and validation - Deep-learn from Logit Classifiers to Random Forests and Neural Networks - Do unsupervised Clustering, Principal Components and Bayesian Techniques - Build multi-period models for CECL, IFRS 9 and CCAR - Build credit portfolio correlation models for VaR and Expected Shortfal - Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code - Access real credit data and much more ... Full Product DetailsAuthor: Harald Scheule , Daniel RöschPublisher: Deep Credit Risk Imprint: Deep Credit Risk Dimensions: Width: 19.10cm , Height: 2.30cm , Length: 23.50cm Weight: 0.776kg ISBN: 9780645245202ISBN 10: 0645245208 Pages: 456 Publication Date: 23 July 2021 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Language: Chinese Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |