12 × 12 Schlüsselkonzepte zur Mathematik

Author:   Oliver Deiser ,  Caroline Lasser ,  Elmar Vogt ,  Dirk Werner
Publisher:   Springer Fachmedien Wiesbaden
Edition:   2. Aufl. 2015
ISBN:  

9783662470763


Pages:   355
Publication Date:   14 August 2015
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $100.29 Quantity:  
Add to Cart

Share |

12 × 12 Schlüsselkonzepte zur Mathematik


Add your own review!

Overview

Full Product Details

Author:   Oliver Deiser ,  Caroline Lasser ,  Elmar Vogt ,  Dirk Werner
Publisher:   Springer Fachmedien Wiesbaden
Imprint:   Springer Spektrum
Edition:   2. Aufl. 2015
Dimensions:   Width: 15.50cm , Height: 2.00cm , Length: 23.50cm
Weight:   0.765kg
ISBN:  

9783662470763


ISBN 10:   3662470764
Pages:   355
Publication Date:   14 August 2015
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.
Language:   German

Table of Contents

1 Grundlagen.- 1.1 Die Mathematik und ihre Sprache. 1.2 Junktoren. 1.3 Quantoren. 1.4 Beweise. 1.5 Menge und Element. 1.6 Mengenoperationen. 1.7 Relationen. 1.8 Funktionen. 1.9 Äquivalenzrelationen. 1.10 Partielle und lineare Ordnungen. 1.11 Existenz und algorithmische Berechenbarkeit. 1.12 Strukturen und strukturerhaltende Abbildungen.- 2 Zahlen.- 2.1 Natürliche Zahlen. 2.2 Ganze und rationale Zahlen. 2.3 Reelle Zahlen. 2.4 Komplexe Zahlen. 2.5 Quaternionen. 2.6 b-adische Darstellungen. 2.7 Irrationale Zahlen. 2.8 Algebraische und transzendente Zahlen. 2.9 Die Zahlen π und e. 2.10 Infinitesimale Größen. 2.11 p-adische Zahlen. 2.12 Zufallszahlen.- 3 Zahlentheorie.- 3.1 Teilbarkeit. 3.2 Primzahlen und der Fundamentalsatz der Arithmetik. 3.3 Kongruenzen. 3.4 Einfache Primzahltests. 3.5 Das RSA-Verfahren. 3.6 Die Verteilung der Primzahlen. 3.7 Quadratische Reste. 3.8 Kettenbrüche. 3.9 Rationale Approximationen algebraischer Zahlen; Liouvillesche Zahlen. 3.10 Diophantische Gleichungen. 3.11 Elliptische Kurven. 3.12 Zahlkörper .- 4 Diskrete Mathematik.- 4.1 Kombinatorisches Zählen. 4.2 Graphen. 4.3 Euler-Züge. 4.4 Hamilton-Kreise und das P ≠ NP-Problem. 4.5 Bäume. 4.6 Färbungen und der Satz von Ramsey. 4.7 Bipartite Graphen. 4.8 Matroide. 4.9 Netzwerke und Flüsse. 4.10 Kürzeste Wege. 4.11 Transitivierung von Relationen. 4.12 Planare Graphen und Minoren.- 5 Lineare Algebra.- 5.1 Vektorräume. 5.2 Lineare Unabhängigkeit und Dimension. 5.3 Lineare Abbildungen und Matrizen. 5.4 Lineare Gleichungssysteme. 5.5 Determinanten. 5.6 Euklidische und unitäre Vektorräume. 5.7 Normierte Vektorräume. 5.8 Orthogonalität. 5.9 Dualität. 5.10 Eigenwerte und Eigenvektoren. 5.11 Diagonalisierung. 5.12 Singulärwertzerlegung und Jordansche Normalform.- 6 Algebra.- 6.1 Gruppen. 6.2 Ringe. 6.3 Körper. 6.4 Normalteiler und Faktorgruppen. 6.5 Ideale und Teilbarkeit in Ringen. 6.6 Endlich erzeugte abelsche Gruppen. 6.7 Quotientenkörper. 6.8 Polynome. 6.9 Körpererweiterungen. 6.10 Konstruktionen mit Zirkel und Lineal. 6.11 Galoistheorie. 6.12 Lösbarkeit polynomialer Gleichungen durch Radikale.- 7 Elementare Analysis.- 7.1 Folgen und Grenzwerte. 7.2 Unendliche Reihen und Produkte. 7.3 Stetige Funktionen. 7.4 Exponentialfunktion, Logarithmus und trigonometrische Funktionen. 7.5 Differenzierbare Funktionen. 7.6 Das Riemannsche Integral. 7.7 Der Hauptsatz der Differential- und Integralrechnung. 7.8 Vertauschung von Grenzprozessen. 7.9 Taylorentwicklung und Potenzreihen. 7.10 Fourierreihen. 7.11 Fouriertransformation 7.12 Kurven im Rd .- 8 Höhere Analysis.- 8.1 Metrische und normierte Räume. 8.2 Partielle und totale Differenzierbarkeit. 8.3 Mittelwertsatz, Taylorformel und lokale Extrema. 8.4 Der Satz von Picard-Lindelöf. 8.5 Stabilität von Gleichgewichtspunkten. 8.6 Das Lebesguesche Maß. 8.7 Das Lebesguesche Integral. 8.8 Der Gaußsche Integralsatz. 8.9 Holomorphe Funktionen. 8.10 Der Residuensatz. 8.11 Fixpunktsätze. 8.12 Der Bairesche Kategoriensatz.- 9 Topologie und Geometrie.- 9.1 Topologische Räume. 9.2 Stetige Abbildungen. 9.3 Beschreibung von Topologien. 9.4 Produkträume und Quotientenräume. 9.5 Zusammenhang. 9.6 Trennung. 9.7 Kompaktheit. 9.8 Flächen im R3. 9.9 Mannigfaltigkeiten. 9.10 Homotopie 9.11 Homologie 9.12 Euklidische und nichteuklidische Geometrie.- 10 Numerik.- 10.1 Die Kondition. 10.2 Gleitkomma-Arithmetik. 10.3 Numerische Stabilität. 10.4 Das Gaußsche Eliminationsverfahren. 10.5 Die Methode der kleinsten Quadrate. 10.6 Eigenwertprobleme. 10.7 Polynominterpolation. 10.8 Die schnelle Fouriertransformation. 10.9 Numerische Integration und Summation. 10.10 Die Gaußschen Quadraturverfahren. 10.11 Runge-Kutta-Verfahren. 10.12 Das Newton-Verfahren.- 11 Stochastik.- 11.1 Wahrscheinlichkeitsräume. 11.2 Zufallsvariable. 11.3 Erwartungswert und Varianz. 11.4 Bedingte Wahrscheinlichkeiten und Unabhängigkeit. 11.5 Null-Eins-Gesetze. 11.6 Das Gesetz der großen Zahl. 11.7 Der zentrale Grenzwertsatz. 11.8 Parameterschätzung. 11.9 Statistische Tests. 11.10 Markovsche Ketten. 11.11 Irrfahrten. 11.12 Die Brownsche Bewegung.- 12 Mengenlehre und Logik.- 12.1 Mächtigkeiten. 12.2 Das Diagonalverfahren. 12.3 Die Russell-Antinomie. 12.4 Die Zermelo-Fraenkel-Axiomatik. 12.5 Das Auswahlaxiom. 12.6 Das Zornsche Lemma. 12.7 Paradoxa der Maßtheorie. 12.8 Berechenbare Funktionen. 12.9 Formale Beweise und Modelle. 12.10 Die Gödelschen Unvollständigkeitssätze. 12.11 Transfinite Zahlen. 12.12 Die Kontinuumshypothese.- Index.

Reviews

... m chte ich das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen w rde) gibt es hier zu entdecken. Mathematische Semesterberichte ... mochte ich das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen wurde) gibt es hier zu entdecken. Mathematische Semesterberichte ... Flussig und prazise erscheinen die Ausfuhrungen zu den jeweiligen Themen, so dass das Lesen einfach Spass macht. Der Anfanger kann sich zur gegebenen Zeit ... einen groben Uberblick uber ein fur ihn neues Teilgebiet der Mathematik verschaffen ... das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen wurde) gibt es hier zu entdecken ... (Harald Lowe, in: Mathematische Semesterberichte, Jg. 58, Heft 2, 2011) Aus den Rezensionen: ... das Buch allerdings durchaus empfehlenswert. Studierende werden damit einen guten Uberblick uber ihre Lerninhalte finden, und die alten Hasen unter den Mathematikern konnen damit ihre Kenntnisse uber die wichtigsten Aspekte der mathematischen Teilbereiche, die sie nicht tagtaglich anwenden, leicht auffrischen. (R. Geretschlager, in: Internationale Mathematische Nachrichten, Heft 225, 2014, S. 44) ... Flussig und prazise erscheinen die Ausfuhrungen zu den jeweiligen Themen, so dass das Lesen einfach Spass macht. Der Anfanger kann sich zur gegebenen Zeit ... einen groben Uberblick uber ein fur ihn neues Teilgebiet der Mathematik verschaffen ... das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen wurde) gibt es hier zu entdecken ... (Harald Lowe, in: Mathematische Semesterberichte, Jg. 58, Heft 2, 2011) Aus den Rezensionen: ... das Buch allerdings durchaus empfehlenswert. Studierende werden damit einen guten Uberblick uber ihre Lerninhalte finden, und die alten Hasen unter den Mathematikern konnen damit ihre Kenntnisse uber die wichtigsten Aspekte der mathematischen Teilbereiche, die sie nicht tagtaglich anwenden, leicht auffrischen. (R. Geretschlager, in: Internationale Mathematische Nachrichten, Heft 225, 2014, S. 44) ... Flussig und prazise erscheinen die Ausfuhrungen zu den jeweiligen Themen, so dass das Lesen einfach Spass macht. Der Anfanger kann sich zur gegebenen Zeit ... einen groben Uberblick uber ein fur ihn neues Teilgebiet der Mathematik verschaffen ... das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen wurde) gibt es hier zu entdecken ... (Harald Lowe, in: Mathematische Semesterberichte, Jg. 58, Heft 2, 2011) ... mochte ich das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen wurde) gibt es hier zu entdecken. Mathematische Semesterberichte


... Flussig und prazise erscheinen die Ausfuhrungen zu den jeweiligen Themen, so dass das Lesen einfach Spass macht. Der Anfanger kann sich zur gegebenen Zeit ... einen groben Uberblick uber ein fur ihn neues Teilgebiet der Mathematik verschaffen ... das Buch jedem interessierten Studierenden ans Herz legen. Als Orientierungshilfe im Studium macht es durchaus eine gute Figur, und viele spannende Dinge (die man im Wahlbereich des Bachelors so vielleicht nicht in Betracht ziehen wurde) gibt es hier zu entdecken ... (Harald Lowe, in: Mathematische Semesterberichte, Jg. 58, Heft 2, 2011)


Author Information

Oliver Deiser und Caroline Lasser unterrichten Mathematik an der TU München, Elmar Vogt und Dirk Werner an der FU Berlin. Die Lehr- und Forschungsinteressen von Oliver Deiser betreffen die Grundlagen der Mathematik. Caroline Lasser arbeitet an den Schnittstellen von angewandter Analysis und Numerik. Das Forschungsgebiet von Elmar Vogt ist die Geometrische Topologie. Die Forschungsinteressen von Dirk Werner liegen auf dem Gebiet der Funktionalanalysis.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List