Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection

Author:   Miguel Dovale Álvarez
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
ISBN:  

9783030208622


Pages:   245
Publication Date:   24 August 2019
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $284.60 Quantity:  
Add to Cart

Share |

Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection


Add your own review!

Overview

Devised at the beginning of the 20th century by french physicists Charles Fabry and Alfred Perot, the Fabry-Perot optical cavity is perhaps the most deceptively simple setup in optics, and today a key resource in many areas of science and technology. This thesis delves deeply into the applications of optical cavities in a variety of contexts: from LIGO’s 4-km-long interferometer arms that are allowing us to observe the universe in a new way by measuring gravitational waves, to the atomic clocks used to realise time with unprecedented accuracy which will soon lead to a redefinition of the second, and the matterwave interferometers that are enabling us to test and measure gravity in a new scale. The work presented accounts for the elegance and versatility of this setup, which today underpins much of the progress in the frontier of atomic and gravitational experimental physics.

Full Product Details

Author:   Miguel Dovale Álvarez
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
Weight:   0.576kg
ISBN:  

9783030208622


ISBN 10:   3030208621
Pages:   245
Publication Date:   24 August 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Atomic clocks, cold atoms and gravitational waves.- Part 1: Cavities for Optical Atomic Clocks.- Thermal-noise-limited room-temperature ULE cavity.- Isolation from external perturbations.- Measuring resonator stability.- Part 2: Cavities for Atom Interferometry.- Cavity atom optics.- Fundamental limitations of cavity-assisted atom interferometry.- Gravitational wave detection with cavity-assisted atom interferometry.- 4-mirror large-waist cavity with tuneable stability for enhanced atom interferometry.- Part 3: Cavities for Gravitational-wave Detection.- Near-unstable cavities for future gravitational wave detectors.- Modelling parametric instabilities at Advanced LIGO and ET.- Summary and conclusions.- Appendix.

Reviews

Author Information

Miguel Dovale Alvarez (Santiago de Compostela, 1989) is a spanish-american physicist and member of the LIGO Scientific Collaboration. He holds a Licenciatura in Physics from Universidade de Santiago de Compostela (Spain), and a PhD from the University of Birmingham (UK). His main research interests are laser interferometry, quantum optics and gravitational physics. During his doctorate he developed a thermal-noise-limited Fabry-Perot interferometer at the National Physical Laboratory (UK). Dovale is now a postdoc at the Max Planck Institut für Gravitationsphysik (Hannover, Germany), where he works in several aspects of the LISA interferometry chain.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List