|
![]() |
|||
|
||||
OverviewEine integrierte und inhaltlich neu strukturierte Einführung in die Höhere Mathematik, die vom Konkreten zum Allgemeinen aufsteigt, auf Schubladen wie ""Lineare Algebra'' und ""Analysis'' verzichtet und die (fast) alle Beweise enthält. Die Stochastik wird auch von Anfang an einbezogen. Als Leser kommen nicht nur Studierende der Wirtschaftswissenschaften, besonders des Wirtschaftsingenieurwesens, sondern auch Studierende der Wirtschaftsmathematik infrage. Auch Studierende neuer Studiengänge wie Bachelor in Mathematik und sogar des klassischen Diplomstudiengangs Mathematik werden das Buch mit Gewinn lesen. Im Vergleich zur ersten Auflage wurden einige Umstellungen und Ergänzungen, insbesondere im Kapitel Differentialrechnung, vorgenommen sowie zusätzliche Graphiken eingefügt. Full Product DetailsAuthor: Norbert Henze , Günter Last , Gunter Last (Karlsruhe Institute of Technology, Germany)Publisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 2., überarb. u. erw. Aufl. 2005 Dimensions: Width: 17.00cm , Height: 2.30cm , Length: 24.00cm Weight: 0.830kg ISBN: 9783528131906ISBN 10: 352813190 Pages: 430 Publication Date: 13 May 2005 Audience: Professional and scholarly , Professional & Vocational Replaced By: 9783834819635 Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1 Grundlagen.- 1.1 Elemente der Aussagenlogik.- 1.2 Aussageformen und Quantoren.- 1.3 Mengen.- 1.4 Mathematische Schlussweisen.- 2 Abbildungen und Relationen.- 2.1 Abbildungen.- 2.2 Relationen.- 3 Zahlen und Rechengesetze.- 3.1 Die natürlichen Zahlen.- 3.2 Die ganzen Zahlen.- 3.3 Die rationalen Zahlen.- 3.4 Die reellen Zahlen.- 3.5 Elemente der Kombinatorik.- 4 Elemente der Stochastik.- 4.1 Zufällige Experimente.- 4.2 Endliche Wahrscheinlichkeitsräume.- 4.3 Zufallsvariablen.- 4.4 Der Erwartungswert.- 4.5 Ein einfaches finanzmathematisches Modell.- 4.6 Mehrstufige Experimente.- 4.7 Bedingte Wahrscheinlichkeiten.- 4.8 Stochastische Unabhängigkeit.- 4.9 Binomial- und Multinomialverteilung.- 4.10 Ein Binomialmodell der Finanzmathematik*.- 5 Folgen und Reihen.- 5.1 Folgen.- 5.2 Unendliche Reihen.- 5.3 Die Exponentialfunktion.- 5.4 Anwendungen in der Stochastik.- 5.5 Warteschlangen*.- 6 Differentialrechnung.- 6.1 Stetigkeit.- 6.2 Eigenschaften stetiger Funktionen.- 6.3 Grenzwerte von Funktionen.- 6.4 Potenzreihen (1).- 6.5 Gleichmäßige Konvergenz und Stetigkeit.- 6.6 Differentiation.- 6.7 Mittelwertsätze.- 6.8 Taylorpolynome und Taylorreihen.- 6.9 Potenzreihen (2).- 6.10 Konvexität.- 6.11 Kurvendiskussion.- 7 Integration.- 7.1 Das Riemann-Integral.- 7.2 Der Hauptsatz der Differential- und Integralrechnung.- 7.3 Uneigentliche Riemann-Integrale.- 7.4 Berechnung von Stammfunktionen.- 7.5 Numerische Integration.- 7.6 Verteilungsfunktionen und Dichten.- 8 Lineare Gleichungssysteme und Matrizenrechnung.- 8.1 Lineare Gleichungssysteme.- 8.2 Der ?n als Vektorraum.- 8.3 Lineare Abbildungen.- 8.4 Das Skalarprodukt.- 8.5 Lösungsmengen linearer Gleichungssysteme.- 8.6 Affine Unterräume.- 8.7 Matrizenrechnung.- 8.8 Markowsche Ketten und stochastische Matrizen*.- 8.9 Stochastische Bediennetze*.- Symbolverzeichnis.ReviewsAuthor InformationProf. Dr. Norbert Henze und Prof. Dr. Günter Last forschen und lehren an der Universität Karlsruhe (TH) in der Fakultät für Mathematik. Tab Content 6Author Website:Countries AvailableAll regions |