Face Detection and Gesture Recognition for Human-Computer Interaction

Author:   Ming-Hsuan Yang ,  Narendra Ahuja
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 2001
Volume:   1
ISBN:  

9781461355465


Pages:   182
Publication Date:   09 November 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Face Detection and Gesture Recognition for Human-Computer Interaction


Add your own review!

Overview

Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyzing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g. , recognition of gestures, activities, facial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener­ ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gen­ erate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de­ rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis.

Full Product Details

Author:   Ming-Hsuan Yang ,  Narendra Ahuja
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 2001
Volume:   1
Dimensions:   Width: 15.50cm , Height: 1.00cm , Length: 23.50cm
Weight:   0.314kg
ISBN:  

9781461355465


ISBN 10:   146135546
Pages:   182
Publication Date:   09 November 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Introduction.- 1. Face Detection.- 2. Gesture Recognition.- 3. Book Overview.- 2. Detecting Faces in Still Images.- 1. Introduction.- 2. Detecting Faces In A Single Image.- 3. Face Image Databases and Performance Evaluation.- 4. Discussion and Conclusion.- 3. Recognizing Hand Gestures Using Motion Trajectories.- 1. Introduction.- 2. Motivation and Approach.- 3. Motion Segmentation.- 4. Skin Color Model.- 5. Geometric Analysis.- 6. Motion Trajectories.- 7. Recognizing Motion Patterns Using Time-Delay Neural Network.- 8. Experiments.- 9. Discussion and Conclusion.- 4. Skin Color Model.- 1. Proposed Mixture Model.- 2. Statistical Tests.- 3. Experimental Results.- 4. Applications.- 5. Discussion and Conclusion.- 5. Face Detection Using Multimodal Density Models.- 1. Introduction.- 2. Previous Work.- 3. Mixture of Factor Analyzers.- 4. Mixture of Linear Spaces Using Fisher’s Linear Discriminant.- 5. Experiments.- 6. Discussion and Conclusion.- 6. Learning to Detect Faces with SNoW.- 1. Introduction.- 2. Previous Work.- 3. SNoW Learning Architecture.- 4. Learning to Detect Faces.- 5. Empirical Results.- 6. Analyzing SNoW: Theoretical and Empirical Results.- 7. Generation and Efficiency.- 8. Discussion and Conclusion.- 7. Conclusion and Future Work.- 1. Conclusion.- 2. Future Work.- Appendices.- A– Covariance of Two Normally Distributed Variables.- B– Conditional Distributions of Multiple Correlation Coefficient.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List