|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Barrett O'Neill (University of California, Los Angeles, California, U.S.A.)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc Edition: 2nd edition Dimensions: Width: 15.20cm , Height: 3.40cm , Length: 22.90cm Weight: 0.930kg ISBN: 9780120887354ISBN 10: 0120887355 Pages: 520 Publication Date: 16 May 2006 Audience: College/higher education , Tertiary & Higher Education Replaced By: 9780443365126 Format: Hardback Publisher's Status: Active Availability: Awaiting stock ![]() The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of ContentsChapter 1: Calculus on Euclidean Space: Euclidean Space. Tangent Vectors. Directional Derivatives. Curves in R3. 1-forms. Differential Forms. Mappings. Chapter 2: Frame Fields: Dot Product. Curves. The Frenet Formulas. ArbitrarySpeed Curves. Covariant Derivatives. Frame Fields. Connection Forms. The Structural Equations. Chapter 3: Euclidean Geometry: Isometries of R3. The Tangent Map of an Isometry. Orientation. Euclidean Geometry. Congruence of Curves. Chapter 4: Calculus on a Surface: Surfaces in R3. Patch Computations. Differentiable Functions and Tangent Vectors. Differential Forms on a Surface. Mappings of Surfaces. Integration of Forms. Topological Properties. Manifolds. Chapter 5: Shape Operators: The Shape Operator of M R3. Normal Curvature. Gaussian Curvature. Computational Techniques. The Implicit Case. Special Curves in a Surface. Surfaces of Revolution. Chapter 6: Geometry of Surfaces in R3: The Fundamental Equations. Form Computations. Some Global Theorems. Isometries and Local Isometries. Intrinsic Geometry of Surfaces in R3. Orthogonal Coordinates. Integration and Orientation. Total Curvature. Congruence of Surfaces. Chapter 7: Riemannian Geometry: Geometric Surfaces. Gaussian Curvature. Covariant Derivative. Geodesics. Clairaut Parametrizations. The Gauss-Bonnet Theorem. Applications of Gauss-Bonnet. Chapter 8: Global Structures of Surfaces: Length-Minimizing Properties of Geodesics. Complete Surfaces. Curvature and Conjugate Points. Covering Surfaces. Mappings that Preserve Inner Products. Surfaces of Constant Curvature. Theorems of Bonnet and Hadamard.ReviewsAuthor InformationBarrett O'Neill is currently a Professor in the Department of Mathematics at the University of California, Los Angeles. He has written two other books in advanced mathematics. Tab Content 6Author Website:Countries AvailableAll regions |