|
![]() |
|||
|
||||
OverviewBig data thrives on extracting knowledge from a large number of data sets. But how is an application possible when a single data set is several gigabytes in size? The innovative data compression techniques from the field of machine learning and modeling using Bayesian networks, which have been theoretically developed and practically implemented here, can reduce these huge amounts of data to a manageable size. By eliminating redundancies in location, time, and between simulation results, data reductions to less than 1 % of the original size are possible. The developed method represents a promising approach whose use goes far beyond the application example of crash test simulations chosen here. Full Product DetailsAuthor: Stefan Peter MüllerPublisher: Logos Verlag Berlin GmbH Imprint: Logos Verlag Berlin GmbH ISBN: 9783832554446ISBN 10: 3832554440 Pages: 232 Publication Date: 05 February 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |