|
![]() |
|||
|
||||
OverviewThis volume contains nineteen research papers belonging to the areas of computational statistics, data mining, and their applications. Those papers, all written specifically for this volume, are their authors’ contributions to honour and celebrate Professor Jacek Koronacki on the occcasion of his 70th birthday. The book’s related and often interconnected topics, represent Jacek Koronacki’s research interests and their evolution. They also clearly indicate how close the areas of computational statistics and data mining are. Full Product DetailsAuthor: Stan Matwin , Jan MielniczukPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 1st ed. 2016 Volume: 605 Dimensions: Width: 15.50cm , Height: 2.40cm , Length: 23.50cm Weight: 7.391kg ISBN: 9783319187808ISBN 10: 3319187805 Pages: 399 Publication Date: 21 July 2015 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsEvolutionary Computation for Real-world Problems.- Selection of Significant Features Using Monte Carlo Feature Selection.- ADX Algorithm for Supervised Classification.- Estimation of Entropy from Subword Complexity.- Exact Rates of Convergence of Kernel-based Classification Rule.- Compound Bipolar Queries: a Step Towards an Enhanced Human Consistency and Human Friendliness.- Process Inspection by Attributes Using Predicted Data.- Székely Regularization for Uplift Modeling.- Dominance-Based Rough Set Approach to Multiple Criterion Ranking with Sorting-specific Preference Information.- On things not Seen.- Network Capacity Bound for Personalized Bipartite Page Rank.- Dependence Factor as a Rule Evaluation Measure.- Recent Results on Quantlie Estimation Methods in Simulation Model.- Adaptive Monte Carlo Maximum Likelihood.- What Do we Choose when we Err? Model Selection and Testing for Misspecified Logistic Regression Revisited.- Semiparametric Inference Identification of Block-oriented Systems.- Dealing with Data Difficulty Factors While Learning from Imbalanced Data.- Privacy Protection in a Time of Big Data.- Data Based Modeling.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |